Agricultural DROUGHT Hazard Assessment
During Phase 1 of the project in the Agricultural Drought workflow we focused on analysing yield loss percentage reduction in case of maize, wheat, potato, and rapeseed plants which are intensively cultivated on agricultural land in Targu Secuiesc and Covasna County.
Crop specific parameters needed for hazard assessment were imported from the crop table preselected for sub continental climate zone no. 5.

Different types of scenarios were analysed, simulations were run for different start and end year periods, near future 2026-2030 and mid-century 2046-2050, also three different RCP scenarios of the defined periods were modelled.

Generated precipitation and yield loss data plots are presented in tables 3 and 4.



Agricultural DROUGHT Risk assessment
The figures presented in Table 6 show the potential revenue losses from irrigation deficit in NUTS2 Centru region, Romania with a bbox zooming on the east part of the region, for the selected crops (maize, wheat, potato and rapeseed), emission scenarios (RCP2.6, 4.5 and 8.5) and periods (2026-2030 and 2046-2050). Losses are expressed by the red shading and represent the ‘lost opportunity cost’ in thousands of euros if crops are grown under non-irrigated conditions. The hatches show the share of cropland in each grid-point with irrigation systems already implemented in 2010 and serves as an indicator of vulnerability to rainfall scarcity.


In the case of Agricultural Drought, immediate actions have to be made, highlighting the importance of implementing irrigation systems but applying sustainable water management principles in this case productive and financial sustainable agriculture sector can be maintained.
River Flooding Hazard assessment
In the first phase of the project we focus on analysing river flood risks, considering the geographic properties of the city and the surrounding places. The city of Targu Secuiesc lies between 3 rivers which have 2 merging points, one at the north border and the other on the south border of the city. These circumstances are significant concerns for us if there is a major rainfall on the water catchment basins. Our analysis assesses the potential impacts and outcomes of the potential floods. This vulnerability shows us the importance of understanding and managing the risks associated with river flooding. Projections from the CLIMAAX toolbox highlight the flood risks and the potential damage zones in Targu Secuiesc.

The Europe-wide dataset of river floods provides a consistent overview of river flood hazard for all regions, but it has several important limitations. The dataset only includes large river basins (larger than 150km2) and does not include flood protections, which can lead to unrealistic flood maps in some regions. In addition, the underlying river model does not include any water management. This is why we could not get any valuable result on some maps. Here we can see the possible flooded territories of the Casin river at the left side and the Raul Negru at the right side.

River Flooding Risk assessment
Flooding is a significant risk in Targu Secuiesc, although the last flood was in 2018, the possibility exists every year when the rainy season comes. Usually, we have up to one month in the spring and one in the summer when rains are coming regularly. In 2018 the Ruseni part of the city was affected, although the water retracted after 6-8 hours, the damage was done. The damage included farmland, basements of houses, roads, and gardens.
In the first phase we conducted the analysis using global datasets, this caused in some cases to get flood maps with incomprehensible results. Hopefully in the next phases we can implement local databases to get proper results.
Projections from the CLIMAAX toolbox highlight the flood risks and the potential damage zones in Targu Secuiesc. In this workflow we will visualize risks to build infrastructure presented by river flooding. Risk is expressed in this workflow in the form of economic damages. We used pre-processed river flood maps and combined these with land use maps, as well as information on economic vulnerability (damage curves) to quantify the order of the damages in economic terms.
In the following the depth-damage curves for different damage classes are visualised. The plot shows the likely % of damage suffered by the different type of land regarding the depth of the water levels. We can see that in the case of RCP8.5 damage curves have a steeper rising section, which means that major damage levels are obtained even with a lover depth of floodwater, higher damage is resulted at a faster rate.

Linking land use types to economic damages
In order to assess the potential damage done by the flooding in a given scenario, we also need to assign a monetary value to the land use categories. We define this as the potential loss in €/m². The plots below show us potential economic damage to infrastructure calculated by using DamageScanner. It takes the following data:
Similar to the depth-damage curves we get worse results by the RCP8.5 scenario. Residential areas are less vulnerable at lower levels of flood water, but are more vulnerable at higher levels of water than for example agricultural land. This also means that by lower water levels the damages are relatively lower than in the case of agricultural lands.


Combining the maps and curves discussed earlier we can plot the damages to get a spatial view of what places can potentially be most affected economically. As we can see in the plots below in the case of a longer return period we have a higher rate of flooded area in both examined scenarios.

To get a better indication of why certain areas are damaged more than others, we can also plot the flood map and land use maps in one figure for a given return period.

In this way we can understand and represent more easily the effects of the floods on different types of land.

Here we see both the potential flood depths and the associated economic damages. This overview helps to see which areas carry the most economic risk under the flooding scenarios.
The urgency of River Flood hazard and risks heavily dependent on extreme climate events, however there is some inconsistency in the results (i.e. downscaled data is needed) they indicate negative impact on agricultural land and build environment, prioritizing the generation of more realistic flood maps is essential.
Targu Secuiesc municipality climate risk management should be multilevel, involving policy support, financial support, education, infrastructure, and natural conservation. There were already measures taken to highlight institutional commitment in Integrated Urban Development Strategy (IUDS) 2021-2030, Sustainable Energy and Climate Action Plan (SECAP) and by accession as Signature of EU missions’ adaptation to climate change.
Different opportunities can be already identified to deal with agricultural drought and river flood risks, such as: